Orofacial clefts are the most prevalent congenital defect and require palate surgery to allow proper feeding and maxillary growth. Due to adverse healing, 60% of these surgeries fail, leading to oronasal fistula (ONF). The ONF affects the child’s ability to eat, talk, and thus, the overall quality of life. Current clinical care to repair ONF uses human donor tissue but carries risk of infection and allograft rejection. As the oral microbiome is bacteria laden, proper wound healing is difficult without immunomodulatory intervention. Along with our collaborators, Drs. Nick Willett, Edward Botchwey, and Dennis Liotta we recently showed that locally delivering immunomodulatory drugs using scaffolds can promote a pro-regenerative oral environment and reduce off-target side effects. We hypothesize that delivering FTY720-loaded polymer scaffolds will enhance oral wound healing and reduce the occurrence of ONF. Integrating principles from both cellular and tissue engineering, we aim to characterize the mechanism by which localized delivery of FTY720 promotes regenerative environment through recruitment of pro-regenerative immune cells. These findings are of extreme importance as harnessing the effects of immunomodulation for oral wound healing provides greater implication for more personalized and efficacious treatment options for pediatric patients.