

ACG Clinical Guideline: Disorders of the Hepatic and Mesenteric Circulation (Part 1 of 2) By Hima Veeramachaneni, MD

General Considerations

- Hemostasis involves multiple systems: liver, platelets, & endothelium
- · Role of liver:
- 1) Produce coagulation factors & coagulation inhibitors
- 2) Clear factors by synthesizing plasminogen
- 3) Produce TPO (thrombopoietin) to stimulate bone marrow to produce platelets
- Hemostatic pathways in compensated cirrhosis are mostly intact
- Bleeding in cirrhosis is not always related to coagulation cascade homeostasis
- Some common bleeding in cirrhosis can be related to portal pressure or acute illness

<u>Defects observed</u> in cirrhosis

↑ Levels of vWF & factor VIII

↓ Plasminogen

Note: sepsis, kidney dysfunction, & hypothermia can tip this balance

Clotting

Bleeding

Concern is for relative hypercoagulability in cirrhosis that is not detected by conventional tests

<u>Defects observed</u> in cirrhosis

Thrombocytopenia

↓ Factor levels (II, V, VII, IX, X, & XI)

Assessment of bleeding risk

- INR correlates poorly with thrombin generation & risk of bleeding in cirrhosis
- Whole blood viscoelastic tests, thromboelastography, & rotational thromboelastometry are a better measure of the viscosity/fibrin clot & may be useful in patients with ↑ INR BUT more studies needed with these tests

Platelets in Cirrhosis

Thrombocytopenia is multifactorial:

- Mainly due to hypersplenism & platelet sequestration
- Other contributing factors: ↓ hepatic TPO production & functional impairment of platelets **TPO-receptor agonists:** help stimulate thrombopoiesis & decrease need for platelet

transfusions for procedures BUT have ↑ risk of thromboembolic events, especially PVT <u>Platelets <50,000/mL</u>: Transfusion is **not** recommended for routine procedures (variceal banding or paracentesis) BUT is appropriate for high-risk procedures

Hypercoagulability in Cirrhosis

- Activated hemostatic pathways → small vessel thrombosis & organ atrophy
- In-hospital DVT prophylaxis: safe if not bleeding & platelets >50,000/mL
- PVT & DVT are common in cirrhosis → treatment consideration should include degree of thrombosis, presence of associated symptoms, relative fall risk, & variceal bleeding risk

Bleeding in Cirrhosis

Categorized broadly into 3 categories:

- 1) Portal hypertensive related bleeding due to ↑ portal pressure
- 2) Mucosal/wound bleeding due to hemostatic defects
- 3) Delayed postprocedural bleeding and mucosal or puncture wound oozing due to accelerated intravascular coagulation and fibrinolysis (AICF)

Fibrinogen: Can have ↓ fibrinogen levels with ↑ fibrin/fibrinogen degradation products

- Transfuse for fibrinogen levels >120-150 for high-risk procedures
- Fibrinolytic agents: only recommended if hyperfibrinolysis is present in active bleeding \uparrow INR: Prophylactic infusion of \geq 2 units of FFP is **not** recommended (leads to \uparrow portal pressure \rightarrow \uparrow risk of bleeding)

Simonetto DA, Singal AK, Garcia-Tsao G, Caldwell SH, Ahn J, Kamath PS. ACG Clinical Guideline: Disorders of the Hepatic and Mesenteric Circulation. Am J Gastroenterol. 2020 Jan 3; 115(1): 18-40. doi: 10.14309/ajg.00000000000000486

Diagnosis of PVT/BCS/MVT

- US doppler should be initial screening modality
- Contrasted CT or MRI should be used to assess extension of thrombus, determine acuity, exclude tumor, confirm diagnosis if unclear on US, and/or assess response to therapy (in some cases)
- Contrasted CT imaging can have >90% accuracy

Patients with PVT + cirrhosis +
portal hypertension sequelae
can also be considered for TIPS
placement (in incomplete
occlusion) or transhepatic/
transsplenic approach (in
complete occlusion)

*Treating
esophageal varices
decreases risk of
bleeding when
starting
anticoagulation

Portal Vein Thrombosis

- Presents as acute upper abdominal pain and fever raises suspicion for PVT
- If new fever, ascites, rebound abdominal tenderness, ↑ WBC, ↑ lactate → suspect intestinal ischemia

Without Cirrhosis Cirrhosis • Workup: thrombophilia workup if no other • Prevalence: 1-20% acute intraabdominal process to explain No data to support prophylaxis against PVT • 25% are due to myeloproliferative disorders Cirrhosis is an independent risk factor for PVT • Workup: thrombophilia workup if Prior history of thrombosis Thrombosis of unusual sites Family history thrombosis Chronic **Bland Acute Tumor** Thrombus progression **Bowel MV** extension **Acute** ischemia **Thrombophilia** Complete **Partial EGD** No/Small Large If liver transplant varices varices candidate Non-selective BB or band ligation* **Initiate Anticoagulation**

Causes of PVT/MVT

Local factors with injury to portal or mesenteric veins

- Acute intraabdominal process: pancreatitis, IBD, diverticulitis, cholecystitis, appendicitis
- Intraabdominal surgery: cholecystectomy, colectomy, liver transplant, splenectomy, TIPS
- Abdominal trauma

Thrombophilia

- Malignancy: intraabdominal, myeloproliferative, HCC
- Paroxysmal nocturnal hemoglobinuria
- Other inherited/genetic thrombophilia conditions
- ↑ estrogen: pregnancy,
 OCP

Sluggish blood flow: Cirrhosis or HF

Mesenteric Vein Thrombosis

- · Can be an extension of PVT
- MVT contributes to 10-20% of ischemic disorders
- Most common presentation: abdominal pain, nausea/vomiting, fever, anorexia, & jaundice
- Treating acute symptomatic MVT with anticoagulation > prevention of bowel ischemia, reduced hospitalization, & improved survival
- Thrombolytic therapy can be considered in progressive thrombus
- Those with intestinal infarction → require surgical resection

Portal Hypertensive Cholangiopathy

- Portosystemic collaterals can lead to CBD obstruction
- <u>Prevalence</u>: 0.5-1% of patients with chronic PVT
- <u>Diagnosis</u>: cholestatic liver chemistry profile, portal cavernoma, & MRCP with extrahepatic biliary abnormalities
- <u>Treatment</u>: endoscopic intervention with stone removal/biliary stent placement

Considerations with Anticoagulation

Goal: decrease clot propagation & restore patency of the portal or mesenteric vein

Duration

Discrete precipitant:
At least 6 months
Thrombophilia or
liver transplant
candidate:

indefinite

Considerations

Weigh benefits/risks based on patient characteristics (i.e., plts <50k or HE with risk of falls)

		Unfractionated heparin	LMWH	
Initiating Anticoagulation	Administration	IV	SQ	
	Frequency	Infusion	BID	
	Half-life	Minutes to 1-2 hours	6-12 hours	
	Monitoring	aPTT or Xa	Not needed	
	Renal function	No dose adjustment	Contraindicated in renal failure	
	Efficacy	++	+++	
	Heparin-induced thrombocytopenia	+++	++	

lation		LMWH	VKA	DOAC
	Administration	SQ	Oral	
	Frequency	BID	Daily	
agn	Efficacy	Better in cancer	++	
\ntico	Renal function	Contraindicated in renal failure	No dose adju	stment
Maintaining Anticoagulation	Absorption	Not affected	Affected from bowel edema in portal hypertension (may consider monitoring of therapy)	
	Monitoring	Not needed	Needed with PT/ INR	Probably not needed
	Antidote	Available		

Simonetto DA, Singal AK, Garcia-Tsao G, Caldwell SH, Ahn J, Kamath PS. ACG Clinical Guideline: Disorders of the Hepatic and Mesenteric Circulation. Am J Gastroenterol. 2020 Jan 3; 115(1): 18-40. doi: 10.14309/aig.000000000000000486

ACG Clinical Guideline: Disorders of the Hepatic and Mesenteric Circulation (Part 2 of 2) By Hima Veeramachaneni, MD

Budd Chiari Syndrome

Antiphospholipid syndrome

Diagnosis

- Primary: Thrombotic obstruction of hepatic venous outflow tract
- Secondary: malignant tumors or extrinsic compression of hepatic veins
- <u>Diagnosis</u>: Imaging- US doppler, CT, & MRI are comparable; US doppler= most cost effective and recommended initial test
 - Hepatic venogram and liver biopsy are rarely needed for diagnosis
- <u>Workup</u>: acquired/ inherited thrombotic conditions & referral to hematologist
 - 79-84% of patients with ≥1 thrombotic disorder
 - 25-46% of patients with ≥2 thrombotic disorders

Clinical Manifestations

- Initial presentation: ascites, abdominal pain, elevated liver enzymes
- Most commonly a subacute to chronic hepatic venous outflow obstruction but can have fulminant liver failure
- Complications related to portal hypertension

Causes

Thrombophilia					
Acquired	Inherited				
 Myeloproliferative disease (~50% of cases) Polycythemia vera Essential thrombocytosis Idiopathic myelofibrosis 	 Factor V Leiden Mutations: prothrombin gene, methyltetrahydrofolate 				
 JAK2 mutation Paroxysmal nocturnal hemoglobinuria Behcet's disease Hyperhomocysteinemia 	C677TThalassemiaDeficiencies: proteinC or S, antithrombin				

Systemic Factors

- Sarcoidosis
- Vasculitis
- Behcet's disease
- Connective tissue disease
- Inflammatory bowel disease

Hormonal factors

- Recent OCP use
- Pregnancy

Management

Prognostic scoring systems are not helpful for guiding choice of therapy

- 1st line= **anticoagulation** \rightarrow acute: heparin/LMWH, chronic: warfarin
- Hematology referral for consideration of therapies for underlying conditions
- Worsening liver +/- renal function, ascites, or HE → <u>angioplasty or TIPS</u>
- If complete hepatic vein obstruction → ultrasound guided direct intrahepatic portosystemic shunt (**DIPS**) to connect portal vein & IVC
- Short segment hepatic vein stenosis → balloon angioplasty of hepatic vein +/- stent
- If DIPS or TIPS not feasible → portosystemic shunt surgery
- TIPS failure or fulminant liver failure → liver transplant (10-15% of patients)
- HCC surveillance: chronic BCS → q6 month US abdomen + AFP (If nodule present, need CT/MRI for further evaluation)

Mesenteric Artery Aneurysms

Demographics

- Usually present after the 6th decade of life
- Most common= splenic artery aneurysms (60%)→
 more common in multiparous women
- 2nd most common= hepatic artery aneurysm
- 1/3 of patients have multiple aneurysms
- Can be true aneurysms or pseudoaneurysms
- Usually incidentally found on imaging

Hereditary Hemorrhagic Telangiectasia (HHT, Osler-Weber-Rendu Disease)

- Genetic disorder \rightarrow autosomal dominant mutation of gene effecting protein in vascular endothelium
- Widespread cutaneous, mucosal, and visceral telangiectasias
- Affects 1 in 5,000-8,000 people
- 55% have liver vascular malformations (LVMs) with 3 types of shunting with associated complications:
- 1) <u>Hepatic artery to hepatic vein (most common)</u> → high-output heart failure (HOHF), ischemic cholangiopathy with secondary sclerosing cholangitis, bilomas
- 2) <u>Hepatic artery to portal vein</u> → portal hypertension (PH) 2' to nodular regenerative hyperplasia (NRH)
- 3) Portal vein to hepatic vein → portosystemic encephalopathy (PSE), HOHF
- **Mesenteric ischemia is a potential complication due to hepatic artery steal from mesenteric vessels

Management

- Treat with endovascular stents, coiling, or embolization if:
 - 1) Associated with symptoms
 - 2) Pseudoaneurysms associated with acute pancreatitis
 - 3) >2cm in diameter
 - 4) Asymptomatic but
 - Women of childbearing age
 - Aneurysm of pancreaticoduodenal and gastroduodenal arcade or intraparenchymal hepatic artery branches
 - Liver transplant recipient
- If not meeting above criteria → surveillance
- @6 months \rightarrow @1 year \rightarrow then every 1-2 years

The Emoroid Digest

@EmoryGastroHep

https://www.aafp.org/afp/2010/1001/p785.html

LVM Diagnosis

- No routine screening for LVMs
- Screen with CTA or MRA if
- Liver bruit or palpable thrill
- Hyperdynamic circulation
- Abnormal liver tests
- Imaging findings (in CT above):
- Intrahepatic hypervascularization
- Enlarged hepatic artery
- Liver biopsy & angiography not recommended

LVM Management

- Asymptomatic LVMs = no treatment
- Standard treatment = symptomatic management
 - HOHF → sodium restriction, diuretics, beta blocker, pregnant patients should have expedited delivery
 - PH → treatment of ascites, varices, PSE. TIPS doesn't fix potential of bleeding
 - Secondary sclerosing cholangitis → ursodeoxycholic acid
 - Bilomas → analgesics if pain, drainage & antibiotics if infected
- Targeted therapy considerations (evidence limited)
 - Bevacizumab = antibody against vascular endothelial growth factor → try 1st since least invasive, especially for HOHF
 - Hepatic artery occlusion with surgical ligation or embolization for PH or biliary involvement → high morbidity/mortality due to biliary +/- hepatic necrosis
 - Liver transplantation → high perioperative complications,
 LVMs can recur as early as 6 years after transplant

Simonetto DA, Singal AK, Garcia-Tsao G, Caldwell SH, Ahn J, Kamath PS. ACG Clinical Guideline: Disorders of the Hepatic and Mesenteric Circulation. Am J Gastroenterol. 2020 Jan 3: 115(1): 18-40. doi: 10.14309/aig.0000000000000486